NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase

نویسندگان

  • Zhimin Gu
  • Jiliang Xia
  • Hongwei Xu
  • Ivana Frech
  • Guido Tricot
  • Fenghuang Zhan
چکیده

BACKGROUND Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2) has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. METHODS Tandem affinity purification followed up by mass spectrometry (TAP-MS) and co-immunoprecipitation (Co-IP) were used to study the interaction between NIMA (never in mitosis gene A)-related kinase 2 (NEK2) and heterogeneous nuclear ribonucleoproteins (hnRNP) A1/2. RNA immunoprecipitation (RIP) was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP)-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. RESULTS NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. CONCLUSIONS Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Alternative Splicing in Regulating Cancer Cell Metabolism

Cancer cells, unlike their normal counterparts, metabolize glucose by aerobic glycolysis. This phenomenon, known as the Warburg effect, is characterized by increased glycolysis with lactate production and decreased oxidative phosphorylation. Although this observation was made over 75 years ago, how cancer cells establish this altered metabolic phenotype remains elusive. Recently, we found that ...

متن کامل

The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism.

Cancer cells preferentially metabolize glucose by aerobic glycolysis, characterized by increased lactate production. This distinctive metabolism involves expression of the embryonic M2 isozyme of pyruvate kinase, in contrast to the M1 isozyme normally expressed in differentiated cells, and it confers a proliferative advantage to tumor cells. The M1 and M2 pyruvate-kinase isozymes are expressed ...

متن کامل

The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival

NEK2 is a serine/threonine kinase that promotes centrosome splitting and ensures correct chromosome segregation during the G2/M phase of the cell cycle, through phosphorylation of specific substrates. Aberrant expression and activity of NEK2 in cancer cells lead to dysregulation of the centrosome cycle and aneuploidy. Thus, a tight regulation of NEK2 function is needed during cell cycle progres...

متن کامل

PKM2 Regulates the Warburg Effect and Promotes HMGB1 Release in Sepsis

Increasing evidence suggests the important role of metabolic reprogramming in the regulation of the innate inflammatory response, but the underlying mechanism remains unclear. Here we provide evidence to support a novel role for the pyruvate kinase M2 (PKM2)-mediated Warburg effect, namely aerobic glycolysis, in the regulation of high-mobility group box 1 (HMGB1) release. PKM2 interacts with hy...

متن کامل

Inhibition of Nek2 by Small Molecules Affects Proteasome Activity

BACKGROUND Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. MATERIALS AND METHODS To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017